Jump-diffusion models driven by Lévy processes

نویسنده

  • José E. Figueroa-López
چکیده

Abstract: During the past and this decade, a new generation of continuous-time financial models has been intensively investigated in a quest to incorporate the so-called stylized empirical features of asset prices like fat-tails, high kurtosis, volatility clustering, and leverage. Modeling driven by “memoryless homogeneous” jump processes (Lévy processes) constitutes one of the most plausible directions in this enterprise. The basic principle is to replace the underlying Brownian motion of the Black-Scholes model with a type of jump-diffusion process. In this chapter, the basic results and tools behind jump-diffusion models driven by Lévy processes are covered, providing an accessible overview, coupled with their financial applications and relevance. The material is drawn upon recent monographs (c.f. [18], [47], [46]) and papers in the field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffusion Covariation and Co-jumps in Bidimensional Asset Price Processes with Stochastic Volatility and Infinite Activity Lévy Jumps

In this paper we consider two processes driven by diffusions and jumps. The jump components are Lévy processes and they can both have finite activity and infinite activity. Given discrete observations we estimate the covariation between the two diffusion parts and the co-jumps. The detection of the co-jumps allows to gain insight in the dependence structure of the jump components and has import...

متن کامل

A Monte Carlo EM algorithm for discretely observed Diffusions, Jump-diffusions and Lévy-driven Stochastic Differential Equations

Stochastic differential equations driven by standard Brownian motion(s) or Lévy processes are by far the most popular models in mathematical finance, but are also frequently used in engineering and science. A key feature of the class of models is that the parameters are easy to interpret for anyone working with ordinary differential equations, making connections between statistics and other sci...

متن کامل

Pricing of Commodity Futures Contract by Using of Spot Price Jump-Diffusion Process

Futures contract is one of the most important derivatives that is used in financial markets in all over the world to buy or sell an asset or commodity in the future. Pricing of this tool depends on expected price of asset or commodity at the maturity date. According to this, theoretical futures pricing models try to find this expected price in order to use in the futures contract. So in this ar...

متن کامل

Efficient and Accurate Log-lévy Approximations to Lévy Driven Libor Models

The LIBOR market model is very popular for pricing interest rate derivatives, but is known to have several pitfalls. In addition, if the model is driven by a jump process, then the complexity of the drift term is growing exponentially fast (as a function of the tenor length). In this work, we consider a Lévy-driven LIBOR model and aim at developing accurate and efficient log-Lévy approximations...

متن کامل

First Jump Approximation of a Lévy Driven SDE and an Application to Multivariate ECOGARCH Processes

The first jump approximation of a pure jump Lévy process, which converges to the Lévy process in the Skorokhod topology in probability, is generalised to a multivariate setting and an infinite time horizon. It is shown that it can generally be used to obtain “first jump approximations” of Lévy-driven stochastic differential equations, by establishing that it has uniformly controlled variations....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010